
Is It Possible to Automatically Port Kernel
Modules?

Yanjie Zhen, Wei Zhang, Zhenyang Dai, Junjie Mao, Yu Chen

Tsinghua University

August 28, 2018



Outline

Background

Introduction

Experiment & Results

Discussion



Kernel modules (kmods) are essential

I A flexible way to extend the functionality of Linux kernel.

I Over 70% of Linux source codes are kernel modules.



Porting kernel modules is necessary but hard

Porting kmods is necessary:

I Kernel interfaces (APIs) are not stable.

I Forward porting: to enjoy enhanced security, boosted
performance and new functionality from the fast evolving
kernel.

I Back porting: for stability/compatibility requirements.

But, it is also hard:

I The Linux kernel is large.

I It is complex.

I And it evolves fast.



Existing approaches for porting kernel modules

Manually:

I A trial-error-fix approach.

I Using “git log” or Google.

Existing tools:

I Based on automated program repair techniques: rely heavily
on compilation error/warning messages

I Based on instance-based inference techniques: infer change
patterns from source code modifications



Outline

Background

Introduction

Experiment & Results

Discussion



Our work

An empirical study:

I Focus on the characteristics and representations of kernel API
changes.

I Dataset: 200 patches related to 10 active kmods from Linux
repository over the last 7 year.

Discussion:

I Feasibility and challenges of porting kmods automatically.

I Our insights in building effective automated tools.



Change patterns

Change patterns, or “patterns” for short, are a core concept of our
work.

I Describe how the usage of an API should be updated.

I API changes
cause−−−→ “change instances” where the API is used

infer−−→ change patterns.

I Provide reference for automatically porting.

I One patch may involve multiple patterns, and most patterns
have multiple instances.

In our experiment, we infer change patterns manually. Semantic
Patch Language (SmPL) is used as the representation of change
patterns.



Change patterns: a concrete example

I f is a function having an
argument d of type
dentry*. f acts as the f2

callback field of some ops

struct.

I For such f , add a new
parameter i with type
inode*, and replace
d inode(d)->flags with
i->flags.

I Replace e->d sb with
dsb(e), where e is any
expression.



Change patterns: a concrete example



Outline

Background

Introduction

Experiment & Results

Discussion



Dataset

I 10 kernel modules from fs/

and drivers/

I 1753 patches related to API
changes

I 200 patches chosen
randomly due to limited
time

I 407 patterns inferred
manually



Questions to answer

Validity of the assumptions on inputs i.e. patches

I How many change patterns are there in a single commit?

I How many instances does each pattern have?

I Does the compiler always complain about out-of-date API
usages?



Q1-1: How many change patterns are there in a single
commit?

I 36.5% (73 out of 200) of
the commits involve multiple
patterns

I 111 commits (55.5%)
contain changes irrelevant to
API usage updates →
w irrelevant



Q1-2: How many instances does each pattern have?

I 87.5% of patterns (356 out
of 407) have multiple
instances.



Q1-3: Does the compiler always complain about
out-of-date API usages?

When some pattern is missed,

I 51 patterns (12.5%) change
runtime behavior without
triggering any compiler
message → runtime

I 105 patterns (25.8%)
neither cause compiler
error/warning nor alter
program runtime behavior
→ future & unknown



Questions to answer

Validity of the assumptions on inputs i.e. patches

I How many change patterns are there in a single commit?

I How many instances does each pattern have?

I Does the compiler always complain about out-of-date API
usages?

Representation of changes (within 356 patterns with multiple
instances)

I What kinds of code are changed by the patterns?

I How often do the patterns involve macro invocations?

I What kinds of contexts do the patterns require?



Q2-1: What kinds of code are changed by the patterns?

I 86.5% of the patterns (308
out of 356) touch function
definitions. → fun (intra) &
fun (inter)

I 6.4% of the patterns (23 out
of 356) update definitions of
global variables. → global



Q2-2: How often do the patterns involve macro
invocations?

I 33.4% (119 out of 356) of
the patterns involve macro
invocations. → both &
deleted & inserted



Change patterns: a concrete example



Q2-3: What kinds of contexts do the patterns require?

I 36.5% (130 out of 356) of
changes are context
dependent. → from the
second to the last column

I Callbacks (81 out of 356)
and global variables (21 out
of 356) account for the
majority (78.5%). →
callback & global



Outline

Background

Introduction

Experiment & Results

Discussion



Discussion

Feasibility:

I Based on compilation messages: severely limited

I Based on pattern inference: promising

Challenges:

I Noises: multiple patterns in a single commit; modification of
irrelevant code

I Macros: infer pattern with macros

I Contexts: especially callbacks and global variables



Thank you!
More in the paper!
Any questions?


	Background
	Introduction
	Experiment & Results
	Discussion

