Is It Possible to Automatically Port Kernel Modules ?

Yanjie Zhen
Tsinghua University
zhenyjl7@mails.tsinghua.edu.cn

Junjie Mao
Tsinghua University
junjie.mao@enight.me

ABSTRACT

As essential components in Linux kernel, kernel modules
(kmods) account for over 70% of Linux source code and are
heavily dependent on fast evolving and non-stable kernel
internal interfaces. Forward and back porting kmods to tar-
get versions of Linux kernel is hard but necessary. We con-
ducted a comprehensive study to investigate the character-
istics of kernel internal interface changes by analyzing 256
representative patches selected from Linux development his-
tory in last 7 years. We gained some new insights into chal-
lenges and opportunities on automatic porting of kernel mod-
ules. The study allows us a better understanding of the prob-
lem and it is useful for designing automated tools to assist
in porting kmods.

KEYWORDS

Linux, Kernel modules, Automatic porting

ACM Reference Format:

Yanjie Zhen, Wei Zhang, Zhenyang Dai, Junjie Mao, and Yu Chen.
2018. Is It Possible to Automatically Port Kernel Modules ?. In 9th
Asia-Pacific Workshop on Systems (APSys ’18), August 27-28, 2018,
Jeju Island, Republic of Korea. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3265723.3265732

1 INTRODUCTION

Kernel modules (kmods) provide a flexible way to extend
the functionality of Linux kernel. However, interfaces(APIs)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

APSys ’18, August 27-28, 2018, Jeju Island, Republic of Korea

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6006-7/18/08...$15.00
https://doi.org/10.1145/3265723.3265732

Wei Zhang

Tsinghua University
zhangweil5@mails.tsinghua.edu.

cn

Zhenyang Dai
Tsinghua University
daizy15@mails.tsinghua.edu.cn

Yu Chen

Tsinghua University
yuchen@tsinghua.edu.cn

between the core part of Linux kernel and kmods are non-
stable, and kmods written for a certain version of Linux ker-
nel generally fail to work on other versions. To enjoy en-
hanced security, boosted performance and new functional-
ity from the fast evolving kernel, developers have to make a
continuous effort to forward port their kmods to the rapidly
changing APIs. Also, potential users of kmods may rely on
earlier kernel versions for stability requirements, and thus
have to back port kmods. However, the code base of Linux
kernel is large and evolves fast, making forward and back
porting kmods a non-trivial task.

Porting kmods to target versions of Linux kernel is both
time-consuming and error-prone. Developers have to spend
time understanding the compilation error/warning messages
and find the corresponding patch that changes the related
interfaces manually. They may query through Linux reposi-
tory using commands like it 10g.However it is a painful
task due to the large number of patches, for example 484308
patches were submitted from Linux v3.0 to v4.16. Googling
directly is another common way to learn interface changes.
Whichever way the developer chooses, he is likely to get dis-
tracted by massive irrelevant information. Fortunately, our
empirical study shows that nearly 90% of kernel interfaces
are used multiple times, and quite a few modules interact
with the kernel interface in similar ways, thus it is feasible
to build automated tools to learn the change patterns from
concrete cases.

While porting kmods manually remains the common way
in the Linux community, many automated tools have been
built in the last decade. These automated tools mainly fall
into two categories. Tools from the first category employ
automated program repair techniques [4, 11-13, 27], and
rely heavily on compilation error/warning messages to find
the correct API-usage change pattern. Tools in the second
category employ instances-based inference techniques [1, 9,
10, 17, 20], attempting to directly extract change patterns
from code modifications done by kernel developers. Most
pattern inference tools are not pragmatic, since Linux ker-
nel patches have some special features, e.g. macro, callback

https://doi.org/10.1145/3265723.3265732
https://doi.org/10.1145/3265723.3265732

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

function pointers etc., hindering accurate analysis on change
patterns.

To have a better understanding of the challenges and fea-
sibility of porting kmods automatically, we selected 200 rep-
resentative patches from Linux v3.0 to v4.16 and inferred
patterns of API changes manually. We investigated the char-
acteristics and representation of API changes in real world.
The important results are summarized as follows.

o 38.4% kernel API changes do not trigger any compiler
error/warning message, and therefore tools based on
automated program repair techniques are severely lim-
ited.

e 87.5% of patterns have multiple instances, indicating
that automated tools are likely to infer these patterns
from multiple instances and provide reference to other
use cases of the API. Instances-based inference tech-
nique is an alternative way.

® 55.5% of commits involve changes that are irrelevant
to API usage updates, and one third of the commits in-
volve multiple patterns. Filtering out irrelevant changes
and untangling multiple patterns are major challenges.

e 36.5% of changes are context dependent and over 30%
of changes have macro invocation. Current approaches
are not able to handle them effectively.

In this paper, we also provide our insights into building
automated tools for porting kmods. The rest of this paper is
organized as follows. Section 2 gives an overview of porting
kmods. Section 3 shows our empirical study on the char-
acteristics and representation of kernel API changes. Sec-
tion 4 analyzes principle, capability and limitation of ex-
isting approaches to kmod porting. Section 5 discusses the
challenges and possible techniques in porting kmods.

2 AN OVERVIEW OF PORTING KMODS

One of the difficulties in porting kernel modules is that the
Linux kernel code base is extremely large and grows at a fast
rate. Yet kmods play an important role in Linux kernel, and
account for over 70% of Linux source code. Figure 1 shows
the change in the amount of kernel code from kernel version
v3.0 to v4.15.

The complexity of Linux kernel makes matters worse, as it
often requires kernel developers to have decent knowledge
in the C programming language, the assembly language, the
computer architecture, etc. But in fact, many kernel module
developers are not experts in Linux kernel, but merely ex-
perts in their own kernel modules. It is also hard for kernel
experts to fully understand such a large number of kernel
modules. The gap between kernel module developers and
kernel developers increases the complexity of porting ker-
nel modules.

Yanjie Zhen et al.

107
2 | | |
00 kmod

U0 kernel

—_
ot
T
|

Lines of Code
—_
T
|
|
|
|

0 \ \ \ \ \ \ \ \
v3.0 v3.5 v3.10v3.15 v4.0 v4.5 v4.10

Version of Linux kernel

Figure 1: size of kernel and kmods

Porting kernel modules is mainly done manually by devel-
opers, using a trial-and-error approach. Firstly, they compile
the given kmod against kernel of target version and try to
understand the resulting error/warning messages. Secondly,
they grep keywords that occur in the messages using com-
mands like git 1og -G in Linux repository, or search
keywords through Google. Thirdly, they locate the commits
related to the API changes, or Google provides some useful
references. Based on these information they could fix the
errors/warnings. Finally, developers recompile the modified
kmods, if compilation is successful, the modification is con-
sidered to be valid. Otherwise, they repeat the above steps.
Obviously, this is time-consuming and error-prone.

3 EMPIRICAL STUDY

Understanding internal API changes has been a hot topic
in literature, and related studies can be found on the cate-
gories, frequency, complexity, impact and trend of API up-
dates [2, 7, 8, 18, 23, 25, 28]. Differing from the above work,
our empirical study focuses on the characteristics that help
to understand the challenges and applicability of pattern in-
ference techniques for porting kmods.

We present our study on 200 commits from Linux reposi-
tory over the last 7 years (from v3.0 to v4.16). We use “change
pattern” to describe similar changes to an API, which can
provide references for automatically porting. In our study,
we inferred change patterns manually.

3.1 Change pattern

Firstly, we would briefly explain the meaning of “change
pattern” in this paper. Our empirical study shows most of

Is It Possible to Automatically Port Kernel Modules ?

internal APIs would be used more than once. We call each
use case as an instance. We could find a pattern to describe
the API changes by abstracting their differences reasonably.
Patterns can provide references to other usage instances.
Prior approaches describe “change patterns” in different

ways. The following example illustrates the definition of change

pattern in our study. We use Semantic Patch Language (SmPL)
to describe patterns, which is widely recognized in the Linux
community. Listing 1 is part of the code in a commit from
the Linux repository. The commit adds a new parameter
to the functions acting as the callback 2 in any ops. Two
change patterns are found in these functions, one using the
given 1node instead of fetching one from the given den-
try (line 5-6 and 23-24), and the other referring to the su-
per block by function dsb () instead of d->d_sb (line 7-8
and 15-16). Listing 2 shows the semantic patch we generated
manually from Listing 1, which describes the first pattern in
line 13-14 and the second pattern in line 21-22.

#define d inode(d) ((d)->1i)

-int f2(dentry *d) {

+int f2(dentry *d, inode *i){

- if(d inode(d)->flags & F2) { ... }
+ if(i->flags & F2) { ... }

- return d->d _sb->mode;

+ return dsb(d)->mode;

}

T - S I NV R

10 struct ops opsl = { .fl = f1, .f2 = f2, };
11

12 -int f3(dentry *x) {

13 +int f3(dentry *x, inode *i) {

14 -

15 - return f3(x->parent->d sb);

16 + return f3(dsb(x->parent));

17 }

18 struct ops ops2 = { .f2 = 3, };

19

20 -int f4(dentry *d) {

21 +int f4(dentry *d, inode *i) {

22 int ret;

23 - if (d inode(d)->flags & F3) { ... }
24 + if (i->flags & F3) { ... }

25 return ret;

26 }

27 struct ops ops3 = { .f2 = f4, };

Listing 1: Example Code

3.2 Dataset

To collect commits with API changes, we select a target mod-
ule M, fetch all commits that are introduced during the de-
velopment from version v3.0 to v4.16 (which covers 7 years),
randomly pick commits changing both files in M and out of
M, and filter out non-essential commits, such as updating

APSys ’18, August 27-28, 2018, Jeju Island, Republic of Korea

1 @rule@
2 identifier s, f;

3 @@

4 struct ops s = { .f2 = f, };

5 @@

¢« typedef dentry, inode;

7 identifier rule.f;

g identifier argl, arg2;

o @@

f (dentry * argl) {

f (dentry * argl, inode * arg2) {

A+

d inode(argl)->flags
_arg2->flags

13 -
14 +
15 +.0.>

16 }

18 @@
19 expression E

20 @@

21 - E->d sb
22 + dsb(E)
23 }

Listing 2: Semantic patch describing the pattern in
Listing 1

comments or typo fixes, by manual inspection. As is shown
in Figure 2, the process is applied to 10 kernel modules in fs
and drivers. There are 2081 commits changing both files
in M and out of M. Some commits are related to more than
one modules, so we got 1753 commiits after removing dupli-
cates. Due to time constraint, a total number of 200 commits
are collected in our study.

A few developer could change API in one commit and
change API calls in following commits. These cases are rare,
so they are out of our consideration.

Target modules Commits

fs/btrfs 282

fs/ext2 141

fs/ext4 342

fs/jfs 104

fs/xfs 219
drivers/block/drbd 137
drivers/gpu/drm/radeon 291
drivers/net/.../ixgbe 68
drivers/usb/gadget 367
drivers/input/keyboard 130

Total 2081

Figure 2: Our target modules and the number of com-
mits changing both files in M and out of M.

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

Yanjie Zhen et al.

n wn n
= c c
g 140 5 200 5 240
e 120 wj/o irrelevant C——1 £ 160 £ 200
S 100 w irrelevant XX g 8 160
S 780 W« 120 5 120
o 60 o 80 o
— = = 80
by 40 b 40 2 40
z 123456 78+ z \’ 2%0,50.%0_ %050 %, z % %, Y, U O
. . O SpVp ™ % T (79
Number of patterns in one commit % e € 0
o ® 2
Number of instances from one pattern
(a) How many patterns are there (b) How many instances (c) Does compiler always complain
in a single commit? do each pattern has? about out-of-date APl usages?
1) 1] 1))
5 320 S 240 S 240
2 300 o 160 o 160
‘G %88 5 120 5 120
2 2 of [5oRrn
g 48 0 — :E; 0 1 — g 0 o
=z X%, O K D Sk Sk = b % H. 7 = /,> %
% Y% o(5 /O D) /2/ 7 O (N2 \90 O/) Q// 06 ,)) O’O, L@
7, 17, 65,70, " Yex %y Yx ® 2 o %, o %,
20 %0 7, 0 © Q] s D %, o
(‘(9/(‘/ % o % (972 A

(d) What kind of code
are changed by the patterns?

(e) How often do the patterns
involve macro invocations?

(f) What kinds of contexts
do the patterns require?

Figure 3: Results of our study

3.3 Validity of the Assumptions on Inputs

It is common in prior work on pattern inference to have
some assumptions on the given input. Some of the tech-
niques take manual API usage changes as input and infer
patterns by abstracting away irrelevant details [1, 17, 20].
They are applicable only when the given change instances
are of the same pattern. Other techniques leverage compila-
tion errors to pinpoint out-of-date API usages, which requir-
ing that such errors are always triggered whenever a pattern
is missed and may not apply to certain kernel modules.

This section discusses the characteristics of raw changes
in a commit, showing that raw changes do not typically
meet the assumptions mentioned above.

(Q1) How many change patterns are there in a sin-

gle commit? A single commit may resolve multiple issues [5],

which is more likely to occur in commits with APTupdates [8,
19]. While the “one logical change per patch” policy is widely
adopted in the Linux community, it does not prevent multi-
ple API updates in a single commit as long as these APIs are
considered “logically” related by developers.

Figure 3(a) presents a histogram of the number of API up-
dates in each commit. The 200 commits have 407 patterns
in total, and 36.5% (73 out of 200) of the commits involve
multiple patterns. Typical cases include changing multiple
logically related APIs at the same time or updating an exist-
ing API call according to its parameters.

Another fact worth noting is that changes irrelevant to
API usage updates are common in the commits. 111 com-
mits (55.5%) in our study involve this kind of changes, such
as implementation updates, dead code cleanups, refactoring
and module-specific functionality modifications.

(Q2) How many instances does each pattern have?
We are concerned about the proportion of APIs that are used
more than once, which is the basis of the effectiveness of pat-
tern inference techniques. Figure 3(b) presents the distribu-
tion of the number of instances per pattern, which shows
that 87.5% of patterns (356 out of 407) have multiple in-
stances.

(Q3) Does compiler always complain about out-of-
date API usages? Figure 3(c) shows when developers may
notice that a pattern is missed. 251 out of the 407 patterns,
accounting for 61.6%, lead to compiler complains, either warn-
ing or error, if they are missed. 51 patterns (12.5%) change
the runtime behavior without triggering any message dur-
ing compilation. The other 105 patterns, when missed, nei-
ther cause compiler error / warning nor alter program run-
time behavior. But 35 of them introduce wrappers to func-
tionalities, such as field accesses and lock operations, which
will soon be updated according to the commit logs. APIs
introduced by the remaining 70 patterns are not known to
be updated in the following commits, but nothing prevents
them to be changed in the future.

Is It Possible to Automatically Port Kernel Modules ?

Summary. In real-world commits, it is common to have
multiple patterns (36.5%), as well as irrelevant changes (55.5%),
tangled in the same commit. Most patterns (87.5%) have mul-
tiple instances and thus can probably be inferred by extract-
ing commonalities among the instances. On the other hand,
the coverage of current techniques depending on compiler
messages is limited by the fact that a considerable amount
of patterns (38.4%), when missed, do not trigger compilation
€rrors or warnings.

3.4 Representation of Changes

Raw changes in a commit should be represented in a struc-
tural way so that irrelevant changes can be filtered, instances
of different patterns can be untangled and commonalities
among instances can be extracted. This part discusses what
information should be preserved in such representations.

In this section we focus on the 356 patterns with at least
two instances.

(Q4) What kinds of code are changed by the pat-
terns? Figure 3(d) shows how many change patterns touch
function definitions (fun), global variable definitions (global),
header inclusion (#include) or macro definition (macro). 86.5%
of the patterns (308 out of 356) apply to function definitions
and only 3 of them require changing multiple functions si-
multaneously. Another 6.4% of the patterns (23 out of 356)
update definitions of global values, mostly adding/deleting
field initializers to/from structures. The other patterns are
seen in header inclusions, macro definitions, conditional com-
pilation directives, structure declarations and string literals.
The results show that a majority of patterns can be inferred
by sole intra-procedural analysis.

(Q5) How often do the patterns involve macro invo-
cations? Macros in the C language are famous for the com-
plexity they bring to source-to-source transformations [3, 6,
14, 15, 21]. For example, Listing 1 uses ((d) ->1) instead
of d_inode(d) ifitis inferred without considering macro
invocations. Such a difference is unacceptable because the
incorrect pattern matches nothing in the code and thus does
not help upgrade out-of-tree modules.

Figure 3(e) shows the number of patterns that have one
or more macro invocations in the deleted lines (deleted), the
inserted lines (inserted) or both (both). In our study, 33.4%
(119 out of 356) of the patterns have macro invocations in
the deleted lines, which must be retained for the patterns to
work. Thus, pattern inferences techniques must be able to
to preserve macro invocations in the generated patterns.

(Q6) What kinds of contexts do the patterns require?
In this paper we refer to code that affects what kind of ex-
pression should be updated as contexts required by the pat-
tern. Such contexts should be included in an inferred pattern

APSys ’18, August 27-28, 2018, Jeju Island, Republic of Korea

to accurately locate where the patterns are applied and de-
cide what kinds of changes should be done.

Figure 3(f) shows the kinds of contexts involved in the
studied patterns. Apart from 226 patterns (63.5%) requiring
no context, the contexts a change pattern depends on mainly
fall into the following categories.

e callback: 81 patterns in our study are specific to func-
tions assigned to pointers in structures of a particu-
lar type, like the pattern in Listing 1. These functions
typically act as callbacks on certain events, and are
changed due to modifications to the callback signa-
tures.

e global: 21 change patterns add or remove field initial-
izers of global structures of a particular type. Fields
of the same name but in different types of structures
must not be touched.

The other kinds of contexts include high-level semantic
information (semantic), adjacent statements of an inserted
statement (addition), and whether an expression matching
the deleted line is used as conditions (conditional) or loca-
tion values (Irvalue).

Summary. Change patterns of API usage mostly apply
locally to definitions of functions (86.5%) and global vari-
ables (6.4%), indicating that intra-procedural analysis is a
reasonable way to start with. Preserving macro invocations
is required in 33.4% of the patterns. Among all kinds of the
contexts required by the patterns, callbacks and type of global
variables account for the majority (78.5%).

4 CURRENT APPROACHES ON KMOD
UPGRADE

Many automated approaches of porting kmods have been
proposed. In this section, we analyze the principle, capabil-
ity, and limitation of current approaches.

4.1 Automated Program Repair

Approaches employing automated program repair techniques
mainly assume that unchanged code will cause exceptions
when compiling or running directly on kernels of other ver-
sions. Nine-tenths of current approaches of porting are based
on compilation messages only, while our study shows not all
porting issues can be detected by compilation error/warn-
ing. Nearly 40% of API changes don’t cause any compilation
complains.

F. Thung et al. [27] propose an automated back-porting
approach for Linux kernel drivers. For compilation errors
generated when a new version of a driver is compiled against
an old version of kernel, they use dichotomy to locate com-
mits in development history that lead to compilation errors,
and try to fix compilation errors with change patterns in

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

the commit. It is limited to drivers in which the compiler
generates only one error message. Prequel [11] and Gee-
reduce [11] are a combination of tools for forward and back
porting Linux device drivers. They propose an approach that
automatically searches commit history in the git repository
using GCC compilation error/warning messages, and filters
information related to target error/warning. The proposed
approach is based on the observation that many drivers in-
teract with the kernel API in similar ways, thus change ex-
amples are likely to be available in the code history. Pre-
quel searches git commit history for matching queries to
get more accurate results than git log -G/-S.

There are some techniques currently focusing on fixing
runtime bugs caused by improper conditions, and it is not
yet known how these techniques may help concerning for-
ward and back porting of kmods. Angelix [13] synthesizes
fixes by introducing additional constraints and controlled
symbolic execution. GenProg [4] and SPR [12] search the
fix space generated by some predefined sets of transforma-
tions.

4.2 Change Pattern Inference

In Linux kernel community, Semantic Patch Language (SmPL) [24]

can be used to describe change patterns. It is an abstracted
form of patches synthesized from multiple change instances.

Coccinelle [22] could automatically generate concrete patches

based on SmPL, providing further assistance to developers.
But it can’t automatically generate semantic patches. When
an API is changed, developers must abstract the patch man-
ually and save it for future kmods developers for references.

Several approaches are proposed to infer pattern from
multiple instances. Spdiff [1] represents a change instance
as a replacement of subexpression, while a change pattern is
a replacement of subexpression with a meta variable (which
can match any expression). In order to infer change patterns
from multiple change instances, Spdiff enumerates all pos-
sible ways in which it can introduce metavariable for each
concrete replacement, and gets a set of candidate change pat-
terns. Then it take the intersection of all the above sets and
pattern with the largest number of non-meta-variables are
selected as the final result. In our experience it fails to rep-
resent over a half of the instances in the commits, which is
probably related to the adoption of imprecise term trees in-
stead of standard ASTs. And it fails to handle changes involv-
ing macro. Libsync [20] represents the interface function
call and related data and control dependencies in the form
of a graph, which is called API usage mode. Each change
instance is transformed into addition, deletion, update and
other modification operations of nodes in API usage model.
Pattern is the maximal frequent subset of edit operations.
LASE [17] represents each exemplar as a sequence of AST

Yanjie Zhen et al.

node edit operations and adopts the longest common sub-
sequence algorithm to extract a template change and gen-
eralize identifier names when necessary. Neither Libsync
nor LASE discusses how tangled change instances can be
divided, how irrelevant changes can be filtered out or how
callback-related contexts can be retained in the generated
template changes.

In addition to automatically inferring change patterns from
multiple instances, some prior works try to introduce addi-
tional information or assumptions to infer change patterns.
LSDiff [10] and Ref-Finder [9] use predefined rules or tem-
plates to identify common types of systematic edits. Infer-
ring template changes from a single exemplar is also known
to work with predefined generalization heuristics [16] or in-
teractive guides from developers [26, 29].

5 DISCUSS

In this section, we discuss the feasibility and challenges of
porting kmods automatically. And we provide our insights
in building an efficient automated tools.

5.1 Feasibility and challenges

Our study shows that 87.5% of patterns have multiple in-
stances. In other words, nearly 90% of kernel API changes
can infer patterns to provide assistance to porting. More-
over, 38.4% of kernel API change do not trigger any com-
piler error or warning message, the capability of approaches
based on compilation messages is severely limited.

Based on our empirical study and analysis of current ap-
proaches, we present three challenges.

e We found out that 55.5% of commits involve changes
that are irrelevant to API usage changes, and one third
of the commits involve multiple patterns. It means
there are lots of irrelevant concrete changes in ker-
nel patches, which are noises for change pattern in-
ference.

e We found out that 36.5% of changes are context depen-
dent. Callbacks and type of global variables account-
ing for the majority (78.5%). It is hard for general anal-
ysis to handle this situation.

e Kernel is mostly written in the C programming lan-
guage, adopting some abusive language features, e.g.
various macro invocations. We found some flexible C
macro usages impede the semantic analysis and gen-
eration of change pattern.

5.2 Our insights

To build an efficient automated tools of pattern inference for
porting, the following key technologies must be addressed.
e The quality of the change pattern depends on the min-
imal granularity of change instances inside one patch.

Is It Possible to Automatically Port Kernel Modules ?

We need filter out changes irrelevant to API usage
change and untangle multiple patterns in one commit.

o The precision of change pattern depends on the defi-
nition of similarity in changes instances. Based on the
similarity, we could merge change instances into high-
level change patterns, which can provide reference to
porting kernel modules.

e The coverage of change pattern depends on the ca-
pability to handle changes with callback-related con-
texts, macros etc. Macro invocations and pointers (a

callback is essentially a pointer) are challenges in source-

to-source transformations, but our study shows that
they are prevalent in API changes. For macros, we
need to expand macros to get semantic information, at
the same time, macro information should be retained.
For callback, we need to realize that it’s a special kind
of pointer, and there is no need for a general but com-
plex method of handling pointers.

6 CONCLUSION

The study of Linux kernel internal interface change shows
that pattern inference is a candidate way to automatically
port kernel modules. We highlight that the challenges are fil-
tering out irrelevant changes, assessing similarity of change
instances to group and infer patterns, handling changes with
macro and callback-related context. We hope our study can
motivate the design of automated tools to assist in forward
and back porting kernel modules.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for help-
ful comments and suggestions on an earlier version of this
paper. This work is supported by National Natural Science
Foundation of China (Grant No. 61772303).

APSys ’18, August 27-28, 2018, Jeju Island, Republic of Korea

REFERENCES

[1] ANDERSEN, J., AND LawalLL, J. L. Generic patch inference. Autom.
Softw. Eng 17, 2 (2010), 119-148.

[2] Dig, D., AND JoHNSON, R. E. The role of refactorings in API evolution.

In ICSM (2005), IEEE Computer Society, pp. 389-398.

Gazziiro, P., AND GRIMM, R. SuperC: parsing all of C by taming the

preprocessor. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012

(2012), J. Vitek, H. Lin, and F. Tip, Eds., ACM, pp. 323-334.

Gouegs, C. L., NGUYEN, T., FORREST, S., AND WEIMER, W. Genprog: A

generic method for automatic software repair. IEEE Trans. Software

Eng 38,1 (2012), 54-72.

HERziG, K., AND ZELLER, A. The impact of tangled code changes. In

Proceedings of the 10th Working Conference on Mining Software Repos-

itories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013 (2013), T. Z.

0001, M. D. Penta, and S. Kim, Eds., IEEE Computer Society, pp. 121—

130.

KASTNER, C., GIARRUSSO, P. G., RENDEL, T., ERDWEG, S., OSTERMANN,

K., AND BERGER, T. Variability-aware parsing in the presence of lex-

ical macros and conditional compilation. In Proceedings of the 26th

Annual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH

2011, Portland, OR, USA, October 22 - 27, 2011 (2011), C. V. Lopes and

K. Fisher, Eds., ACM, pp. 805-824.

Kim, M., 0001, T. Z., AND NAGAPPAN, N. An empirical study of refac-

toringchallenges and benefits at microsoft. IEEE Trans. Software Eng

40,7 (2014), 633-649.

KiM, M., Car, D., AND 0001, S. K. An empirical investigation into the

role of API-level refactorings during software evolution. In Proceed-

ings of the 33rd International Conference on Software Engineering, ICSE

2011, Waikiki, Honolulu, HI, USA, May 21-28, 2011 (2011), R. N. Taylor,

H. C. Gall, and N. Medvidovic, Eds., ACM, pp. 151-160.

[9] Kim, M., GEE, M., LoH, A., AND RACHATASUMRIT, N. Ref-finder: a refac-
toring reconstruction tool based on logic query templates. In Proceed-
ings of the 18th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010
(2010), G.-C. Roman and K. J. Sullivan, Eds., ACM, pp. 371-372.

[10] Kim, M., aND NoTKIN, D. Discovering and representing systematic
code changes. In ICSE (2009), IEEE, pp. 309-319.

[11] LawaALL, J., PALINSKI, D., GNIRKE, L., AND MULLER, G. Fast and precise
retrieval of forward and back porting information for linux device
drivers. In 2017 USENIX Annual Technical Conference (2017).

[12] Long, F., AND RINARD, M. Staged program repair with condition syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - Sep-
tember 4, 2015 (2015), E. D. Nitto, M. Harman, and P. Heymans, Eds.,
ACM, pp. 166-178.

[13] MECHTAEV, S., Y1, J., AND ROYCHOUDHURY, A. Angelix: scalable multi-
line program patch synthesis via symbolic analysis. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016 (2016), L. K. Dillon, W. Visser, and
L. Williams, Eds., ACM, pp. 691-701.

[14] MEDEIROS, F. Safely evolving preprocessor-based configurable sys-
tems. In Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion
Volume (2016), L. K. Dillon, W. Visser, and L. Williams, Eds., ACM,
pp. 668-670.

[15] MEDEIROS, F., KASTNER, C., RIBEIRO, M., NADI, S., AND GHEY], R. The
love/hate relationship with the C preprocessor: An interview study.
In 29th European Conference on Object-Oriented Programming, ECOOP
2015, Fuly 5-10, 2015, Prague, Czech Republic (2015), J. T. Boyland, Ed.,

[3

—

[4

—

—
wu
—

G

—

[7

—

8

—

—

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

vol. 37 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
pp. 495-518.

MENG, N., Kim, M., AND McKINLEY, K. S. Systematic editing: generat-
ing program transformations from an example. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011 (2011),
M. W. Hall and D. A. Padua, Eds., ACM, pp. 329-342.

MENG, N., KiM, M., AND McKINLEY, K. S. LASE: locating and apply-
ing systematic edits by learning from examples. In 35th International

Yanjie Zhen et al.

A taxonomic study. In 17th European Conference on Software Main-
tenance and Reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013
(2013), A. Cleve, F. Ricca, and M. Cerioli, Eds., IEEE Computer Society,
pp. 5-14.

ZHANG, T., SONG, M., PINEDO, J., AND Kim, M. Interactive code review
for systematic changes. In 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1(2015), A. Bertolino, G. Canfora, and S. G. Elbaum, Eds., IEEE
Computer Society, pp. 111-122.

Conference on Software Engineering, ICSE °13, San Francisco, CA, USA,
May 18-26, 2013 (2013), D. Notkin, B. H. C. Cheng, and K. Pohl, Eds.,
IEEE Computer Society, pp. 502-511.

NEGARA, S., CHEN, N., VAKILIAN, M., JoHNSON, R. E., AND D1G, D. A

comparative study of manual and automated refactorings. In ECOOP

2013 - Object-Oriented Programming - 27th European Conference, Mont-

pellier, France, July 1-5, 2013. Proceedings (2013), G. Castagna, Ed.,

vol. 7920 of Lecture Notes in Computer Science, Springer, pp. 552-576.

NEGARA, S., VAKILIAN, M., CHEN, N., JouNsON, R. E., AND D1g, D. Is it

dangerous to use version control histories to study source code evo-

lution? In ECOOP 2012 - Object-Oriented Programming - 26th Euro-

pean Conference, Beijing, China, June 11-16, 2012. Proceedings (2012),

J. Noble, Ed., vol. 7313 of Lecture Notes in Computer Science, Springer,

pp.- 79-103.

Nguyen, H. A, Ncuyen, T. T, Jr., G. W,, NGuYEN, A. T., Kim, M., AND

NguyeN, T. N. A graph-based approach to API usage adaptation. In

Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA

2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA (2010), W. R. Cook,

S. Clarke, and M. C. Rinard, Eds., ACM, pp. 302-321.

OVERBEY, J. L., BEHRANG, F., AND HaFr1z, M. A foundation for refac-

toring C with macros. In Proceedings of the 22nd ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, (FSE-

22), Hong Kong, China, November 16 - 22, 2014 (2014), S.-C. Cheung,

A. Orso, and M.-A. D. Storey, Eds., ACM, pp. 75-85.

PapioLEAv, Y., LawALL, J. L., HANSEN, R. R., AND MULLER, G. Docu-

menting and automating collateral evolutions in linux device drivers.

In Proceedings of the 2008 EuroSys Conference, Glasgow, Scotland, UK,

April 1-4, 2008 (2008), J. S. Sventek and S. Hand, Eds., ACM, pp. 247-

260.

PADIOLEAU, Y., LAWALL, J. L., AND MULLER, G. Understanding collat-

eral evolution in linux device drivers. In Proceedings of the 2006 Eu-

roSys Conference, Leuven, Belgium, April 18-21, 2006 (2006), Y. Berbers

and W. Zwaenepoel, Eds., ACM, pp. 59-71.

PApIOLEAU, Y., LAwALL, J. L., AND MULLER, G. SmPL: A domain-

specific language for specifying collateral evolutions in linux device

drivers. Electr. Notes Theor. Comput. Sci 166 (2007), 47-62.

SANTOS, G., ANQUETIL, N., ETIEN, A., DUCASSE, S., AND VALENTE, M. T.

System specific, source code transformations. In 2015 IEEE Interna-

tional Conference on Software Maintenance and Evolution, ICSME 2015,

Bremen, Germany, September 29 - October 1, 2015 (2015), R. Koschke,

J. Krinke, and M. P. Robillard, Eds., IEEE Computer Society, pp. 221-

230.

SANTOS, G., ETIEN, A., ANQUETIL, N., DUCASSE, S., AND VALENTE, M. T.

Recording and replaying system specific, source code transformations.

In 15th IEEE International Working Conference on Source Code Analy-

sis and Manipulation, SCAM 2015, Bremen, Germany, September 27-28,

2015 (2015), M. W. Godfrey, D. Lo, and F. Khomh, Eds., IEEE Computer

Society, pp. 221-230.

[27] THuNG, F, LE, X.-B. D., Lo, D., AND LAWALL, J. L. Recommending code
changes for automatic backporting of linux device drivers. In ICSME
(2016), IEEE Computer Society, pp. 222-232.

[28] WaNg, S., Lo, D., AND JIANG, L. Understanding widespread changes:

[18

—

[19

[

[20

=

[21

—

[22

—

(23

—_

[24

flan?

[25

=

26

=

	Abstract
	1 Introduction
	2 An Overview of Porting Kmods
	3 Empirical Study
	3.1 Change pattern
	3.2 Dataset
	3.3 Validity of the Assumptions on Inputs
	3.4 Representation of Changes

	4 Current Approaches on Kmod Upgrade
	4.1 Automated Program Repair
	4.2 Change Pattern Inference

	5 Discuss
	5.1 Feasibility and challenges
	5.2 Our insights

	6 Conclusion
	Acknowledgments
	References

